

### New Load Shapes and MARS Planning Models Testing

Laura Popa, Manager, Resource Planning Ben O'Rourke, Senior Engineer, Resource Planning

#### LFTF/ESPWG/TPAS

March 24, 2022

### Background

- Load Shapes MARS Modeling Background
- Testing Results
- Appendix 1: Load/Event Analysis



# MARS Planning Models Load Shapes Background



### Context

- The 2002, 2006, and 2007 actual load hourly MW shapes have been used to shape forecasted energy and peaks into an 8,760 hourly MW shape
  - For use in the Installed Reserve Margin (IRM) and Reliability Planning resource adequacy studies using GE MARS
- The 2002, 2006, and 2007 shapes will become less representative of current load conditions and patterns
  - This is especially true as more behind the meter (BTM) generation, such as solar, is added in the state



### MARS Planning Models and Current Load Shapes

- Historical 8,760 hourly MW shapes are used in the 7 MARS load levels (bins):
  - 2006 for load level (bin) 1
  - 2002 for load level (bin) 2
  - 2007 for load levels (bin) 3 through 7
- Bin 4 (2007 shape) is the expected shape *i.e.*, closest to the Gold Book baseline forecast
- MARS: energy and peaks are scaled to match Gold Book forecasts. Also, LFU is applied hourly, for all hours
- The same historic reference years are used for the external areas



### **Current MARS Load Bins Probabilities and LFU Multipliers**

| Final Recommendations |                    |         |         |         |         |         |                  |  |  |
|-----------------------|--------------------|---------|---------|---------|---------|---------|------------------|--|--|
| Bin                   | Bin<br>Probability | A-E     | F&G     | H&I     | J       | к       | NYCA<br>(Winter) |  |  |
| 1                     | 0.0062             | 114.78% | 115.85% | 112.55% | 109.95% | 115.63% | 111.01%          |  |  |
| 2                     | 0.0606             | 110.01% | 110.53% | 108.40% | 106.49% | 110.73% | 106.89%          |  |  |
| 3                     | 0.2417             | 105.06% | 105.01% | 103.36% | 102.33% | 105.30% | 103.25%          |  |  |
| 4                     | 0.3830             | 100.00% | 99.36%  | 97.68%  | 97.67%  | 100.00% | 100.00%          |  |  |
| 5                     | 0.2417             | 94.88%  | 93.61%  | 91.50%  | 92.58%  | 92.96%  | 97.05%           |  |  |
| 6                     | 0.0606             | 89.73%  | 87.77%  | 84.89%  | 87.13%  | 84.32%  | 94.34%           |  |  |
| 7                     | 0.0062             | 84.63%  | 81.88%  | 77.98%  | 81.38%  | 76.60%  | 91.85%           |  |  |

- Used for the 2021 IRM Study and the 2021 Planning Databases
- <u>Source:</u>

https://www.nyiso.com/documents/20142 /21707507/04%20LFU\_IRM\_2022.pdf



### **DFA Load Shape Recommendations**

- The Demand Forecasting and Analysis (DFA) Team has analyzed recent load shapes under the auspices of the LFU Phase 2 Study in order to make a recommendation for use in the IRM and Reliability Planning (*e.g.*, RNA, CRP, STAR) studies.
- Based on these detailed analyses, the recommendation is to use the 2013, 2017, and 2018 load shapes
  - o Reference: see separate DFA presentation posted for this meeting
- Recommendations:
  - Load Bins 1 and 2: 2013
  - Load Bins 3 and 4: 2018
  - Load Bins 5 to 7: 2017
  - Where possible, in conjunction with current or proposed modeling methods, DFA recommends using load shapes adjusted for changing BTM solar penetrations
    - Note: The BTM solar has been modeled as 5 years of 8,760 hourly historical production MW data for several past planning studies, and below is a summary of the modeling technique



# BTM Solar Modeling Method for the MARS Planning Models

### • Supply side:

- Five years of 8,760 hourly MW profiles based on sampled inverter data
- The MARS random shape mechanism is used: one 8,760 hourly shape (of five) is randomly picked for each replication year
  - Similar with the past planning modeling and aligns with the method used for wind, utility solar, landfill gas, and run-of-river facilities

#### Load side:

- Gross load forecasts will be used for the 2022 RNA, as provided by the DFA group
  - In the past we calculated an average 8,760h MW shape based on the 5 years of historical production data to determine gross load forecast values



# Planning Databases Testing Results

• The following slides provide the results when using the 2021 Planning MARS databases



### **NYCA LOLE Summary Results**

 A summary of the NYCA LOLE (days/year) results when using the new load shapes for both the NYCA and the external areas, and when adjusting the external areas to be between 0.10 and 0.15 d/y LOLE, per the standard study practice:

| 2021 Planning MARS Cases  | Study Year<br>2022<br>(y1) | Study Year<br>2026<br>(y5) | Study Year<br>2031<br>(y10) |
|---------------------------|----------------------------|----------------------------|-----------------------------|
| Base                      | 0.014                      | 0.046                      | 0.069                       |
| (2002, 2006, 2007 shapes) |                            |                            |                             |
| Recommendation            | 0.03                       | 0.052                      | 0.063                       |
| (2013,2017,2018 shapes)   |                            |                            |                             |

#### • Observations:

- NYCA LOLE trends up in earlier study years
  - While the 2013 shape is steeper (dropping off faster, which is less conservative) at the NYCA level, it is more conservative for Zones A and B, driving the higher LOLE in earlier study years
- NYCA LOLE for the outer study years is also driven by Zone J (DEC Peaker Rule, etc.). Similar to the NYCA, Zone J has a relatively steep 2013 load shape



# **Questions?**



### Appendix 1: 2021 Planning MARS Models Load/Event Analysis



# **Current Shapes**



© COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED.

DRAFT - FOR DISCUSSION PURPOSES ONLY

### MARS Current Load Shapes: Study Year 2031



#### 2021 Q3/Q4 STAR Model for Study Year 2031



New York ISO

### MARS Current Load Shapes: Study Year 2031



2021 Q3/Q4 STAR Model for Study Year 2031



# DFA Recommended Shapes



### MARS DFA Recommended Load Shapes: Study Year 2031



2021 Q3/Q4 STAR Model for Study Year 2031



### MARS DFA Recommended Load Shapes: Study Year 2031



2021 Q3/Q4 STAR Model for Study Year 2031



### **Our Mission & Vision**

 $\checkmark$ 

#### **Mission**

Ensure power system reliability and competitive markets for New York in a clean energy future



#### Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

